Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Takashiro Akitsu* and Yasuaki Einaga

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-141, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail:
akitsu@chem.keio.ac.jp

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.031$
$w R$ factor $=0.113$
Data-to-parameter ratio $=17.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\operatorname{Bis}\left(N, N\right.$-dimethylethylenediamine- $\left.\kappa^{2} N, N^{\prime}\right)$ -bis(perchlorato-кO)copper(II)

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right]$, the Cu atom is located at a center of symmetry. It adopts an elongated octahedral trans- $\left[\mathrm{CuN}_{4} \mathrm{O}_{2}\right]$ coordination geometry, which is a typical feature of the pseudo-Jahn-Teller effect. The axial $\mathrm{Cu}-\mathrm{O}$ bond length is 2.605 (4) \AA, while the in-plane $\mathrm{Cu}-\mathrm{N}$ bond lengths are 1.987 (2) and 2.098 (2) \AA.

Comment

Because of the bright prospect of developing photo-controlling materials, copper(II) complexes having ethylenediamine derivatives are important not only as candidates for these materials but also as their building blocks. Indeed, intercalated hybrid materials (Choy et al., 2002), thermochromism (Narayanan \& Bhadbhade, 1998), and photochromism (Takahashi et al., 2002) have been reported so far. The characteristic stereochemistry of copper(II) complexes, for example, flexible distortion (Simmons, 1993) or semi-coordination (Hathaway, 1984), may be explained by the JahnTeller effect (Murphy \& Hathaway, 2003). The pseudo-JahnTeller effect predicts that only appropriately elongated axial bonds may be effective for thermally accessible distortion, and these systems may be very important for designing photocontrolling materials. The structures of semi-coordinated copper(II) complexes having N-substituted ethylenediamine ligands have been systematically investigated, viz. ethylenediamine (en; Maxcy \& Turnbull, 1999), N-methylethylenediamine (N-Meen; Akitsu \& Einaga, 2003), and N ethylethylenediamine (N-Eten; Grenthe et al., 1979). We have determined the crystal structure of $\operatorname{bis}(N, N$-dimethylethyl-enediamine- $\kappa^{2} N, N^{\prime}$)bis(perchlorato- κO)copper(II), (I), and discuss here its structural features.

(I)

Complex (I) is centrosymmetric, with atom Cu 1 located at a center of inversion (Fig. 1 and Table 1). Complex (I) adopts a tetragonally distorted (i.e. elongated) trans- $\left[\mathrm{CuN}_{4} \mathrm{O}_{2}\right]$ coordination environment. The axial $\mathrm{Cu} 1-\mathrm{O} 1$ semi-coordination bond distance is 2.605 (4) \AA. The corresponding $\mathrm{Cu}-\mathrm{O}$ bond lengths are 2.579 (4), 2.569 (2) and 2.594 (3) \AA for the en, N -Meen and N -Eten complexes, respectively. The axial bond length of (I) is comparable to the largest value in the analogous complexes. The geometric parameters in the axial perchlorate ions are unremarkable. Intramolecular hydrogen

Received 8 January 2004 Accepted 20 January 2004 Online 30 January 2004

Figure 1

The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms marked with an asterisk $\left(^{*}\right.$) are at the symmetry positions ($2-\mathrm{x},-\mathrm{y}$, $2-\mathrm{z}$).
bonds (Table 2) are observed between amino H atoms and perchlorate O atoms. These hydrogen bonds also contribute to the stabilization of the axial semi-coordination. Moreover, the complexes are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional network in the crystal structure.

The $\mathrm{Cu} 1-\mathrm{N} 1\left(\mathrm{NH}_{2}\right)$ and $\mathrm{Cu} 1-\mathrm{N} 2\left(\mathrm{NMe}_{2}\right)$ bond distances in (I) are 1.987 (2) and 2.098 (2) \AA, respectively. Apparently, a characteristic structural feature of (I), viz. the difference in the $\mathrm{Cu}-\mathrm{N}$ bond distances, may be attributed to the steric hindrance of the methyl groups. The corresponding $\mathrm{Cu}-\mathrm{N}$ $\left(\mathrm{NH}_{2}\right)$ bond distances are 2.012 (2) and 2.019 (2) \AA for the en, 2.004 (2) \AA for the N-Meen and 2.013 (3) \AA for the N-Eten complex. The $\mathrm{Cu}-\mathrm{N}$ (NHR) bond distances are 2.057 (2) and 2.031 (3) \AA for the N-Meen and N-Eten complexes, respectively. The number of substituent groups (R) at N is more effective in elongating the $\mathrm{Cu}-\mathrm{N}$ bond than the length of the group. The $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$ bond angle of the chelate ligands is $85.40(8)^{\circ}$, which is slightly larger than that of the N-Meen complex [84.58 (7) ${ }^{\circ}$]. The $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$ torsion angle [50.5 (3) ${ }^{\circ}$] is similar to that of related complexes involving mixed ligands (Akitsu \& Komorita, 2002).

The T value, which is defined as the ratio of (in-plane) $\mathrm{Cu}-$ N to (axial) $\mathrm{Cu}-\mathrm{O}$ bond lengths, is the usual criterion for the degree of tetragonal distortion caused by the Jahn-Teller effect (Hathaway \& Billing, 1970). The values of T are 0.78 , $0.78,0.78$ and 0.79 for the N-Eten, en, (I), and N-Meen complexes, respectively. On the other hand, individual T values $\mathrm{Cu}-\mathrm{N}\left(\mathrm{NH}_{2}\right) / \mathrm{Cu}-\mathrm{O}$ are $0.78,0.78,0.76$ and 0.78 , and $\mathrm{Cu}-\mathrm{N}\left(\mathrm{NR}_{2}\right) / \mathrm{Cu}-\mathrm{O}$ are 0.78 , none, 0.81 and 0.80 for the N Eten, en, (I) and N-Meen complexes, respectively. The maximum T value of $\mathrm{Cu} 1-\mathrm{N} 2 / \mathrm{Cu} 1-\mathrm{O} 1$ in (I) suggests that the steric effect of the present N, N-dimethyl substitution results in no elongation of specific bonds but elongation of both types of coordination bonds. Thermal and photoresponse, and soft X-ray absorption spectroscopic studies of the series of related complexes are now in progress to eluci-
date detailed correlations between the structures and the electronic states.

Experimental

Crystals of (I) were prepared from a methanol solution (10 ml) of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \quad(1.01 \mathrm{mmol})$ and N, N-dimethylethylenediamine $(2.00 \mathrm{mmol})$ at room temperature. Blue prismatic crystals were obtained after a few days.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right] \quad Z=1$
$M_{r}=438.76$
$D_{x}=1.668 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$
$a=7.978$ (4) \AA
$b=8.593$ (4) \AA
$c=7.797(8) \AA$
$\alpha=111.01(6)^{\circ}$
$\beta=104.91$ (6) ${ }^{\circ}$
$\gamma=61.65(3)^{\circ}$
$V=436.7(6) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 17 reflections
$\theta=11.2-12.4^{\circ}$
$\mu=1.60 \mathrm{~mm}^{-1}$
$T=297.2 \mathrm{~K}$
Prism, blue
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer
$R_{\text {int }}=0.061$
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$T_{\text {min }}=0.625, T_{\text {max }}=0.726$
2269 measured reflections
2007 independent reflections
1894 reflections with $I>2 \sigma(I)$
$k=-11 \rightarrow 10$
$l=-4 \rightarrow 10$
3 standard reflections every 150 reflections intensity decay: 2.5%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.113$
$S=0.91$
1894 reflections
107 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0348 P)^{2}\right. \\
& +0.3309 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.41 \mathrm{e}_{\mathrm{m}} \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0234
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$2.605(4)$	$\mathrm{Cl} 1-\mathrm{O} 4$	$1.421(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.987(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.482(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.098(2)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.487(4)$
$\mathrm{Cl} 1-\mathrm{O} 1$	$1.433(4)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.480(4)$
$\mathrm{Cl} 1-\mathrm{O} 2$	$1.404(4)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.485(4)$
$\mathrm{Cl} 1-\mathrm{O} 3$	$1.416(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.501(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$90.9(1)$	$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 3$	$115.3(1)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$85.65(9)$	$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	$111.7(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$85.40(8)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$50.5(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}_{2}{ }^{\mathrm{i}}$	0.96	2.26	$3.057(5)$	140

Symmetry code: (i) $1+x, y, z$.
Since the intensity of diffraction was considerably weak, not all of the independent reflections were used for refinement. All H atoms were positioned geometrically ($\mathrm{N}-\mathrm{H}=0.95, \mathrm{C}-\mathrm{H}=0.95-0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

metal-organic papers

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

This work was supported by Grant-in-Aid for the 21st Century COE program 'KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

Akitsu, T. \& Einaga, Y. (2003). Acta Cryst. E59, m991-m993. Akitsu, T. \& Komorita, S. (2002). Bull. Chem. Soc. Jpn, 75, 767-768.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Choy, J.-H., Yoon, J.-B. \& Jung, H. (2002). J. Phys. Chem. B, 106, 11120-11126. Grenthe, I., Paoletti, P., Sandstorm, M. \& Glilberg, S. (1979). Inorg. Chem. 18, 2687-2692.
Hathaway, B. J. (1984). Struct. Bonding, 57, 55-118.
Hathaway, B. J. \& Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.
Johnson, C. K. (1976). ORTEPII. Oak Ridge National Laboratory, Tennessee, USA.
Maxcy, K. R. \& Turnbull, M. M. (1999). Acta Cryst. C55, 1986-1988.
Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009
New Trails Drive Drive, The Woodlands, TX 77381, USA.
Murphy, B. \& Hathaway, B. (2003). Coord. Chem. Rev. 243, 237-262.
Narayanan, B. \& Bhadbhade, M. M. (1998). J. Coord. Chem. 46, 1115-123.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Simmons, C. J. (1993). New J. Chem. 17, 77-95.
Takahashi, K., Nakajima, R., Gu, Z.-Z., Yoshiki, H., Fujishima, A. \& Sato, O. (2002). Chem. Commun. pp. 1578-1579.

